. . .

2. a) Determine y(54) of the following table using 7 M Newton's forward formula

OR

X	50	60	70	80
у	205	225	248	274

b) Given x = 1,2,3,4 and f(x) = 1,2,9,28 respectively, 7 M obtain f(3.5) using Lagrange's method.

<u>UNIT – II</u>

3. a) Compute the first derivative at x = 2.03 of the 7 M following table function

X	1.96	1.98	2.00	2.02	2.04
У	0.7825	0.7739	0.7651	0.7563	0.7473

Code: 20BS1302

NUMERICAL METHODS AND COMPLEX VARIABLES (Common for ECE, EEE)

Duration: 3 hours	Max. Marks: 70		
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries			
14 marks and have an internal choice of	Questions.		
2. All parts of Question must be answered	in one place.		

<u>UNIT – I</u>

- a) Obtain a real root for e^x sin x = 1, using Regula Falsi
 7 M method.
 b) Obtain a reat correct to three desired places for the 7 M
 - b) Obtain a root correct to three decimal places for the 7 M equation $x^3 x 2 = 0$ using Newton- Raphson method.

- b) Evaluate $\int_0^{10} \frac{dx}{1+x^2}$ by using Simpson's 1/3 rule. 7 M OR
- 4. Use fourth order of Runge-Kutta method to evaluate y(0.1) 14 M and y(0.2) given that $y^1 = x + y$, y(0) = 1.

UNIT-III

5. Prove that the function f(z) defined by f(z) = 14 M $\begin{cases} \frac{x^3(1+i)-y^3(1-i)}{x^3+y^3}, (z \neq 0) \\ 0 \qquad (z = 0) \\ \text{is continuous and Cauchy-Riemann equations are satisfied} \end{cases}$

is continuous and Cauchy-Riemann equations are satisfied at the origin, yet f'(0) does not exist.

OR

6. Using Milne-Thompson method, determine the analytic 14 M function f(z) whose real part is $y + e^x cosy$.

$\underline{UNIT} - IV$

- 7. a) Evaluate $\int_C (y^2 + 2xy)dx + (x^2 2xy)dy$ where C 7 M is the boundary of the region by $y = x^2$ and $x = y^2$.
 - b) Evaluate $\int_C \frac{z^3 e^{-z}}{(z-1)^3} dz$, where C is |z-1|=1/2 using 7 M cauchy's integral formula.

OR

- 8. a) Obtain Taylor's series to represent the function 7 M $\frac{z^2-1}{(z+2)(z+3)}$, in the region |z| < 2.
 - b) Expand $f(z) = \frac{e^{2z}}{(z-1)^3}$ about z = 1 as a Laurent's series. 7 M

<u>UNIT – V</u>

- 9. a) Define removable singularity and singularities at 7 M infinity.
 - b) Obtain the singular points and isolated singular points 7 M of $f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$

OR

10. a) Determine the residues of $\frac{z^2-2z}{(z+1)^2(z^2+1)}$ at it poles. 7 M

b) Show that
$$\int_0^{2\pi} \frac{d\theta}{2+\cos\theta} = \frac{2\pi}{\sqrt{3}}$$
 7 M