II B.Tech - I Semester - Regular Examinations - FEBRUARY 2022

NUMERICAL METHODS AND COMPLEX VARIABLES (Common for ECE, EEE)

Duration: 3 hours
Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

UNIT - I

1. a) Obtain a real root for $\mathrm{e}^{\mathrm{x}} \sin \mathrm{x}=1$, using Regula Falsi method.
b) Obtain a root correct to three decimal places for the equation $x^{3}-x-2=0$ using Newton- Raphson method.

OR

2. a) Determine $y(54)$ of the following table using

Newton's forward formula

x	50	60	70	80
y	205	225	248	274

b) Given $x=1,2,3,4$ and $f(x)=1,2,9,28$ respectively, obtain $f(3.5)$ using Lagrange's method.

UNIT - II

3. a) Compute the first derivative at $x=2.03$ of the 7 M following table function

x	1.96	1.98	2.00	2.02	2.04
y	0.7825	0.7739	0.7651	0.7563	0.7473

b) Evaluate $\int_{0}^{10} \frac{d x}{1+x^{2}}$ by using Simpson's $1 / 3$ rule.

OR

4. Use fourth order of Runge-Kutta method to evaluate $\mathrm{y}(0.1) \quad 14 \mathrm{M}$ and $y(0.2)$ given that $y^{1}=x+y, y(0)=1$.

UNIT-III

5. Prove that the function $\mathrm{f}(\mathrm{z})$ defined by $f(z)=$ 14 M $\left\{\begin{array}{c}\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{3}+y^{3}},(z \neq 0) \\ 0 \quad(z=0)\end{array}\right.$
is continuous and Cauchy-Riemann equations are satisfied at the origin, yet $f^{\prime}(0)$ does not exist.

OR
6. Using Milne-Thompson method, determine the analytic function $\mathrm{f}(\mathrm{z})$ whose real part is $y+e^{x} \cos y$.

UNIT - IV

7. a) Evaluate $\int_{C}\left(y^{2}+2 x y\right) d x+\left(x^{2}-2 x y\right) d y$ where $\mathrm{C} \quad 7 \mathrm{M}$ is the boundary of the region by $y=x^{2}$ and $x=y^{2}$.
b) Evaluate $\int_{C} \frac{z^{3} e^{-z}}{(z-1)^{3}} d z$, where C is $|\mathrm{z}-1|=1 / 2$ using $\quad 7 \mathrm{M}$ cauchy's integral formula.

OR

8. a) Obtain Taylor's series to represent the function $\frac{z^{2}-1}{(z+2)(z+3)}$, in the region $|z|<2$.
b) Expand $f(z)=\frac{e^{2 z}}{(z-1)^{3}}$ about $\mathrm{z}=1$ as a Laurent's series.

UNIT - V

9. a) Define removable singularity and singularities at infinity.
b) Obtain the singular points and isolated singular points 7 M of $f(z)=\frac{z^{2}-1}{(z+2)(z+3)}$

> OR
10. a) Determine the residues of $\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+1\right)}$ at it poles.
b) Show that $\int_{0}^{2 \pi} \frac{d \theta}{2+\operatorname{Cos} \theta}=\frac{2 \pi}{\sqrt{3}}$

